Forschungsprojekte

Regelungstechnik

  • Makro-Mikro-Kinematik zur Mikromontage
    Der Schwerpunkt des Forschungsvorhabens liegt in der Erforschung von Methoden zum Aufbau eines Handhabungssystems, welches die aktorische Grundlage für ein klinikgerechtes, ultragenaues mechatronisches Assistenzssystem bilden soll. Ziel ist es dabei, eine Auflösung von 1 µm in einem Arbeitsvolumen von 10 mm³ zu erreichen, wobei das Arbeitsvolumen flexibel im Raum positioniert werden kann. Die technische Umsetzung erfolgt durch die Kopplung einer Piezoaktorik an einen 6-Achs-Präzisionsroboter (µKRoS316). Der Roboter übernimmt die Positionierung der Werkzeuge im gesamten Arbeitsbereich (Makro-Positionierung). Der Mikro-Positioniereinheit kommen Aufgaben wie Kompensation der Lage-Ungenauigkeiten des Roboters, Ausgleichen von Schwingungen und das hochgenaue Verfahren des Werkzeugs zu. Das Arbeitsprogramm lässt sich entsprechend der oben genannten Arbeitsschwerpunkte in fünf Bereiche gliedern: Entwurf einer gekoppelten Regelung Aufbau eines externes Messsystems zur Realtime-6D-Lagebestimmung Erforschung von Methoden zur Verbesserung der 6D-Lagegenauigkeit von Positioniereinheiten Matching der Koordinatensystemen von Positioniereinheiten und des Messsystems und Bahnplanung Entwicklung und Konstruktion des Werkzeugsatzes
    Jahr: 2015
  • Regelungskonzepte bildverarbeitungsgestützter Bewegung eines Objektes
    Am Institut für Mess- und Regelungstechnik wurde ein Versuchstand zur Stabilisierung eines 3D-inversen Pendels gebaut. Für die Bestimmung der Position des Pendels ist es notwendig die Positionen des Fußpunktes und der Spitze des Pendels zu ermitteln. Die Position der Spitze des Pendels – genau gesagt der weißer Kugel – wird mit Hilfe der Hochgeschwindigkeitskamera ermittelt. Die CMOS-Kamera macht 148 Bilder pro Sekunde. Der Zusammenhang zwischen den 2D-Bildkoordinaten und den 3D-Weltkoordinaten wird durch eine vorherige Kamerakalibrierung hergestellt. Die Position des Fußpunktes bzw. des Wagens wird über die Schrittmotoren ermittelt. Ziel der Regelung ist es, das Pendel in der stabilen aufrechten Lage an einer Position zu halten, im zweiten Schritt soll sich das Pendel auf eine Bahn – im Speziellen auf einem Kreis - stabil bewegen. Es werden ein PID-Regler, ein Regler mit Zustandsrückführung, ein MRAC- Regler (model reference adaptive control) mit Vollzustandrückführung und ein nichtlinearer Regler verwendet. Technisch wird die Steuerung mit Hilfe der xPC-Target Toolboxes von MATLAB realisiert. Die Regelungsalgorithmen werden vom Target-PC ausgeführt. Auf dem Host-PC wird lediglich die Bildverarbeitung ausgeführt und die Ergebnisse werden zum Target-PC durch die Ethernet-Verbindung geschickt. Diese Regelungskonzepte könnten für die Stabilisierung der Patienten in der Strahlentherapie verwendet werden.
    Jahr: 2015
  • Robotergestützte Montage optischer Systeme mittels Prädiktor-Korrektor-Verfahren
    Dieses Forschungsprojekt beschäftigt sich mit dem funktionsorientierten Aufbau optischer Systeme und zielt darauf ab, die hohen geforderten Toleranzen sowohl der optischen Komponenten als auch der Positioniersysteme zu verringern. Des Weiteren soll auch eine geringere Ausschussrate optischer Komponenten während des Herstellungsprozesses gewährleistet werden.
    Leitung: Dr.-Ing Christian Pape
    Jahr: 2018