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Abstract

Undesirable time-variable motions of dynamical structures (e.g. scales, balances, vibratory
platforms, bridges and buildings) are mainly caused by unknown or uncertain excitations. In a
variety of applications it is desirable or even necessary to attenuate these disturbances in an
effective way and with moderate effort. Hence, several passive as well as active methods and
techniques have been developed in order to treat these problems. However, employment of
active techniques often fails because of their considerable financial costs. We propose an
affordable control scheme which accounts for the above-mentioned deficiencies. In addition,
we allow constraints on control actions. Furthermore, the number of control inputs
(actuators) may be arbitrary, i.e., the system may be mismatched. The scheme is based on
Lyapunov stability theory and, provided that the bounds of the uncertaintics are a priori
known, a stable attractor (ball of ultimate boundedness) of the structure can be computed. In
case measurement errors or uncertainties, respectively, are significant, it is shown how the
Lyapunov-based control scheme may be combined with a fuzzy control concept. The
effectiveness and behavior of the control scheme is demonstrated on two simplified models of
elastic structures such as a two story building and a bridge subjected to a moving
truck. © 2001 The Franklin Institute. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction
The class of systems which we shall take into consideration may be described bya
dynamical system with a finite number of degrees of freedom. The structure has to
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contain “active” elastic coupling elements. We call suspension or coupling elements
“active” if they are adjustable with respect to their stiffness and damping behavior.
Based on this model, a control action is related to a change in these properties. The
mathematical description of these kinds of structures is assumed to be an initial value
problem of the form

X = Ax+B(x,z) -u+e(x,z, 1}, x(0) = xo. (1}
The linear part of the mathematical model of the structure is defined by the constant
and stable matrix A € R™, where n € N denotes the state space dimension. The
control input matrix B(x,z) € R™ is assumed to be continuous in x and z. x € R”

represents the » state variables; z € R" the r “disturbances’ whose current values can
be measured, u € RB” the m control variables. Furthermore, we will assumhe that

rkB(x,z)] =m V(x,z) e R* xR". (2)
holds. That is, we assume that the control variables are not redundant or, in other

words, every control variable acts in a different direction. The control variables are
supposed to be constrained by lower and upper bounds

U = [s1,min; Ui max] X+ X [thn,min, tm max- (3)

This restriction reflects the fact that applied control actions in practice are restricted
because of technical reasoms. Without loss of generahty and for the sake of
convenienice, we may assume that

U=[-1,1] % x [-1,1], (4)

All unknown or uncertain excitations (including unmodelled non-linearity) are
modelled by

eR' xR xR—- %, ={EcR"||€i<ecc Ry} (5)

That is, all uncertainties are assumed to be bounded by the compact ball %, with
radius &:

lle(x,z,0)|| e € Ry V(x,2,0) e R" x R x R,. (6)

We assume also that e is piecewise continuous. Furthermore, we assume that the
state x as well as the disturbances z are available via some measurement devices. In
case of seismic disturbances, z may be determined by seismograph records. That is, x
and z are considered as plant output y = (x,z) (see Fig. I).

2. Control design

2.1. Lyapunov approach

Following the controller design in Leitmann and Reithmeier [1] we ask for a
feedback

pROXR =%, (x,z)—u=(p(x,2)) @)




E. Reithmeier, G. Leitmann [ Journal of the Franklin Institute 338 (2001 ) 203-223 205

F4

Planf
L. Y,

(state x)

Fig. I. Input and output variables of the plant.

such that, for any given positive definite matrix P € R™", the time derivative of

IIx(D)ip = /xT()Px(1), €R, (8)

is as small as possible for any:

(1) response x(7),

(if) disturbance z(z), .

{ii)) admissible uncertainty e(x(¢), z(z), ),

(iv) and time ¢,

and for all admissible choices of control u(z).

This means that, based on the Lyapunov function candidate

V(x} = 3ix|[, (9)

the feedback p(x,z) we are secking is one which minimizes the Lyapunov derivative
L ixznu) = TP{AX + B(x,z)u + e(x,z, t)|

i

=X"P|AX + Z wB(X,2)i; + e(x,z, 1) (10)
j=1 :

with respect to u for every (x,z,1) € R" x R” x R, where i; is the unit vector in the j
direction, i;i; = 0 for i #j. In other words, we seek p(x, z} such that

Zixz)(P(x,2)) = min{ L, (n) |u € %} (11)
Eq. (10) can be written as
g(x,z,f) (ll) = CI(X) + Z ufbj(xa Z’) + C(X) Z, f) (12)
J=1
with
a(xy = —%XTQX where Q = —(PA + A"P),

bi(x,2) = x"PB(x,z}i; where i = oy (13)
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and
e(x,z, 1) = x'Pe(x,z,1). (14)
Then
wimin il bi(x,z) >0, .
c = pix,z) = ' =1,..., 15
W = pi(X,2) {uj,max if By{x,2) <0. (J m) (15)

Using the normalized control space % defined by Eq. (4) we obtain
;= pi(%,z) = —sgn[b;(x,z)}. (16)

The performance of the controller may be enhanced additionally if we
choose P appropriately. The smaller the Lyapunov derivative, the stronger
the “tendency to the origin” of t—X(f). That, on the other hand, can be
done by choosing a suitable positive definite Q and solving the algebraic Lyapunov
equation

Q= —(PA+ATP) (17)

for P. Since A is assumed to be stable, the matrix P is positive definite.
2.2. Stability

Using the control scheme developed in Chapter 2.1 it is possible to determine a
region (compact set) toward which any realization f+— x(#) is attracted and wherein
it remains once it has crossed the boundary of the “attractor”. In order to analyze

this situation we employ the controller P (cf. Eq. (16)) in expression (12). This leads
to

g(x,z,t)(p(x!z)) = ""% XTQX - Z |bj(xa Z)l + XTPG(X, z, l): (18)
f=f

J=

where xTQx is a positive definite quadratic form. Hence, the form is bounded by the
minimum and maximum eigenvalue Amin(Q) and Amax(Q) of Q. That is,

L 52,0 (BX,2)) < = § Amin (Q)|[x][* — i Iy (%, 2)| + I} [IPl} Hle(x, 2, )l (19)
i=1

or, neglecting the second term, employing inequality (6) and using the maximum
eigenvalue Ama<(P) of P '

Lixa) (P, 2)) < = 5 Amin QIIXII + Amar (Pe][x]]. (20)
Thus, we obtain
Pix2(P(%,2)) <0 V|ix|} > r, (21)
where
_ 28dmax(P)

Amin (Q) . (22)
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Fig. 2. Ball of ultimate boundedness.

The radius p of a ball of ultimate boundedness (cf. Fig. 2) is therefore determined by

e ®

and any response ¢+— x(t) which enters
Bp =18 € R"| |18l <p} (24)

say at £ = ¢* remains in %, for all ¢ > z*. It should be noted that 4,, with radius
given in (23), is a ball of ultimate boundedness for control actions w; = 0 Vj, since the
terms Z;":i |b;(x,2)| were neglected in (19). These terms reduce the right-hand side of
(19), except at (x,z) where the b;(x,z) = 0 for a/i j. In other words, the control acts
to reduce the radius of an actual ball of ultimate boundedness (that is, one {or the
controlled system) as well as the rate of convergence.

3. Measurement errors
3.1. General aspects

A change in the control variables u; takes place only if the indicator function b,
defined in (13) changes its sign. That is, a change in u; oceurs if a response f—y(t} =
(x(#),z(#)) crosses

I = {(x,z) e R" x B | bi{x,2) = 0}. (25)
We assume that II; denotes a differentiable manifold of dimension # + ¢ — 1;

otherwise the space R" x R™ would not be separated by II; into two disjoint parts.
Furthermore, then

g I R xR, {&oy= g,(%) (26)
defines a unique and differentiable embedding of Ii; into R” x R" (cf. Fig. 3).
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Rr

Fig. 3. Embedding of I, in R" x .

3.2. Fuzzy concept

Depending on the accuracy of the measurement device there is always uncertainty
in the measured variables. The assumed maximum difference between actual value y
and measured value § may be expressed by Ay = (Axy,...,Axy, Az, ..., Azr)T, such
that

lly - ¥li<lAylfy = 1. (27)

[l -l R x R™ — R, is some norm which takes care of the tolerances and scales in
measurement for the different variables. For instance, it might be defined by

Iyl = J i) [Zl (=) > (452 2} (28)

i=]

As mentioned before, a change in control u; will occur only on the switching plane IT;
for j=1,...,m. Hence, we define uncertain transition regions &~ ; {cf. Fig. 4) as
follows: if the measured value § indicates switching, then the actual value y belongs
to the transition area, that is

yell, = ye g, (29)
The distance between § and IT; is taken to be the perpendicular to the tangent plane

7y.I1; at an appropriate point y* € II; (cf. Fig. 3). According to that definition, y* is
determined by solving the following algebraic equation:

[DgE N F—g(E) =0 = & F) = y* =g(&" ). (30)
Using Eq. (29) we are able to define 7 via
T = {F R xR | I§ - g(&* Bl <1}. (31)

In order to replace the designed Lyapunov controller on &; by some appropriate
fuzzy controller we use relationship (30) as a fuzzyfication process, Within I ; the
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Fig. 4. Uncertain transition area ; and membership function ;.

choice of the control variables may be right or may be wrong. If the decision is right
the choice will be the best case, if the decision is wrong the choice will be the worst
case. Therefore it seems very reasonable to defuzzify the transition area in such a way
that there exists a linear relationship (membership function) within 7. Or, in terms
of probability, we assume a linear distribution across 7 ;, which says that the chance
for § to be right or to be wrong is 50% on the switching surfaces and 100% on the
border of &;. In between it is supposed to be linearly increasing or decreasing,
respectively (cf. Fig. 4). Hence, the membership function is defined by

w T = U, ¥ ) (32)
with

1Y —¥*lls - senlbs(§)] if § €T~ T

Of course, for each j there exists a different y* which needs to be determined via
Eq. (30). The modified continucus state feedback is then given by

~_(y):{u,,-(i) i 11—yl <1,
T senlb )] |IF -yt lla=1

w@rz{o Fetl Gom @)

(34)

4, Examples
4.1, Structure with two stories
An example of the class of systems modelled by (1) is a structure with two stories

as shown in Fig. 5. We will consider this example in order to demonstrate the efficacy
and robustness of the proposed control scheme. In that case, the spring and damping
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Fig. 5. Structure with two stories.

coefficients &; and ¢; are linear functions of the applied control action »; which, for

instance, could be the voltage applied on suspension elements filled with the so-called
smart materials:

kf(vf)=aj’c+ﬁj'cvf (j: 1!2)?

Glo) = + By (F=1,2), (35)

where ocj.‘, o, B}‘ and f7 € R, are constant parameters and the voltage v,

for spring/damper j can be varied between 0 and t; > 0. The linear parameter shift

=)

transforms v; into the normalized control variable ;. For subsequent simulations,
the realization of the disturbance z considered here is 2 periodic ground displacement

tes xp(t) = % sinfve]. (37)
The equation of motion is given by
X = AX + B(x,z)u -+ e(x, 2, 1) (38)
with
0 0 1 0
0 0 0 1
A= k < (39
e+t & et & :
%4 _g. “ _%

Hy "y my iy
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and
0 0
0 0
B X,Z = '3 " ) , 40
(x,2) *fu(xl — X,) —%]'(.X3 — %) %(xz —xp) +§:zl.(x4 — x3) (40)
0 :%(xl — x2) +%(x3 ~ X4)
0 X1 X1
0
NPT RPN P L3 U £ S 1 P L U
mrXe + ohXe X3 P 2 .
0 X4 )52

The indicator function b; may be expressed by
bily)=x"PByy (j=1,2), (42)

where
X
y = [ ] and By =B(x,z)-i;,
z

where B; € R™*" are constant matrices, with
rk[B;] = 1 ' (43)

for j=1 and 2. Hence, an appropriate Householder transformation H; ¢ R""
leads to

by{y) = (x"PH]) - (H;Byy)
= (x"PH] ;) - (c"y), (44)
where
() H;' =HJ,
(i) H;Bjy = (cTy)ey,
(iil) ¢ = const. € R™", e =(1,0,...,0)" e R".
Taking this into consideration, we obtain finally the following statement:
bi(y) =0 < x"PH]e; =0 and/or ¢'y = 0 (45)

L., the manifold IT; degenerates into two planes whose intersection contains the
origin ¢ (cf. Fig. 6). This means, in particular, that

TIL =1 VYyell. (46}

'In earlier work, e.g. (Kelly et al. [2]) or (Leitmann [3]), it is assumed that x,, %, are not measured but
that their bounds are known; in that event, x, and %, contribute to uncertainty in e(x,z, f).
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Yy

Fig. 6. Switching plane IT; for ;.

The following simulations are for initial value problems with xo = 0 (cf. Eq. (1)).
The dynamical system is integrated for 15s and an “amplitude” of each
state component x; is defined as the maximum of its absolute value during the
final 5s.

All results are based on the parameter set (i = 1,2):

O =10° [V], m;=10 [kg], % =0.02 [m] {47}

and
Ns : Ns N

¢ — e ¢ = —_— k = 3 —_ k: 3 —_—

o 5_4[111]’ i S[Vm]’ of =2x10 [ﬂ, B =10 [Vm]' (48)
The fuzzy controller is defined according to Eq. (34) with

by — Fllas =

1 X|—f1 2 XQ—)EQ z )'C]—}.El 2 )'Cz—iz g x(,kfcc 2 )Q-—fe 2
V) ) () ) ) ()

(49)

where Ax|, Axy, Ax,, A%, Ax, and Ax, are the maximum errors which may occur
during measurement. They are given by

Axy 5><10‘3[m]
_ | Ax| 5% 1073m) _Bxe | 5% 1073 m]
Ll PV 0.lfmjs | 204 Az= [Axe}“[ 0.1fm/s] }'(50)

AXZ 01[111/8]
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The results are shown in Figs. 7-10. Each diagram shows the four different cases

® only the Lyapunov controller is used,

® the Lyapunov and Fuzzy controller are combined,

¢ constant maximum damping and maximum stiffness is applied (4 = u; max),
® no control at ail is applied (i; = 0).

As one can easily recognize, there is a significant suppression for all state
components x; in the controlled cases. The cases “constant minimum stiffness and
damping” and “constant maximum stiffness and damping” are significantly worse

£l

T

0-5 T 1 T T T T T T T
I Lyapunov —
0.45 Lyapunov + Fuzzy —

ne control —
0.4 - U=TUnmar - -+ |

1__...

0 5 10 15 20 23
vf[1/s]

Fig. 7. Maximum amplitude 4; of x; versus excitation frequency v.

30 35 40 45 50

0-5 T T 1 1 T T T T T
: Lyapunov —
0.45 - s Lyapunov + Fuzzy — |
" no controf — |

04 . U= tUnaz - -

Fig. 8. Maximum amplitude 4, of x, versus excitation frequency v,
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10 T — T T T T I T T
I Lyapunov — |
9r Lyapunov + Fuzzy —
no control — |
8r U =Umaz - -
Tr _
. 6 4
A R 4
mfs S
4+ ]
3 -
2 -
1 ]
0 rid 1 ; I I N —
0 5 10 15 20 25 30 35 40 45 50
v/[1/s]
Fig. 9. Maximum amplitude 4; of %, versus excitation frequency v.
6 T T T T T T )] T T
Lyapunov —
!- Lyapunov <+ Fuzzy —-
5 no control = -
U= Unmag - -
4+ N
_A2_ i
[m/s]

45 50

v/[1/s}

Fig. 10. Maximum amplitude 4 of %, versus excitation frequency v.

near their resonance frequencies. Although, the “pure Lyapunov controller” leads to
the best results, it does not account for measurement errors. Taking into
consideration that assumed measurement errors may rise up to 25% of the ground
displacement x, and up to 50% for low frequencies v, the combined
“Lyapunov + Fuzzy” control seems to be a very reasonable choice. :

Of course, the smaller the Euclidian norm [|Ay|| of the maximum measurement
errors Ay; the smaller the transition areas & ; around the switching planes IT; and the
smaller the difference between the Lyapunov controller and the combined
“Lyapunov + Fuzzy” control. It is important to note that the significant suppression
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of time-variable displacements of the state components x; takes place in resonant
frequency ranges, and these are exactly the frequency domains where suppression in
most cases is really wanted. Furthermore, it is important to mention that any time
delay during feedback control response may be modelled by an additional
uncertainty in ail measured state variables. It should be also mentioned at this
point that a possible chattering effect along IT; will be suppressed by adding the
Fuzzy controlier near the switching surface.

4.2. Bridge with crossing truck

Fig. 11 shows a simplificd model of a bridge and a truck which crosses the bridge.
The truck model consists of a mass m and an elastic chassis with wheel suspension
(stiffness k£ and damping ¢). The truck moves with velocity ». m, k, ¢ and » are
considered to be uncertain since different trucks may cross the bridge. In this case,
we do not measure any uncertainties or disturbances. The bridge is modefled by a

Fig. 11. Model of an actively mounted bridge with trucks crossing.
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rigid platform with elastic mounts on the left- and right-hand sides. That is, we
consider mainly the first two eigenmodes of the bridge, described by the deviation z
of the center of mass C and the declination ® with respect to the horizontal position
of the bridge. The elastic mounts are considered to be active with stiffness

ki () = of + Bfug

and damping
ci(uy) = ocj? -+ ﬁ;uj

for j = 1,2. u; is the normalized and constrained control variable (see Example 4.1); i.e.,
u € [—1, 1].

The mass of the bridge is given by the parameter M. » the transverse moment of inertia by

the parameter .J. If we introduce the variables ¢, 1 and { according to Fig. 11, then we

obtain the following equations of motion (© and z are assumed to be “small”)
Truck:

m-ip=F—m-g
with
F = k(o — (14 0)) — e + £),
flg = position of relaxed truck suspension for ¢ = 0,
{=z+(~a) O
Bridge:
(i) Mi=Mg+F-F —F,

(ii) JO = (¢ —a)F + aF, ~ bF,
with
Fi =k [—ZLQ 4z — a®] -+ €] [Z - a@}‘,

= kz[—Zzio +z+4+ b@] + CQ[Z' + b@],
zi,0 = vertical position of relaxec_i left-hand suspension,

7y = vertical position of relaxed right-hand suspension.

The truck causes excitation of the bridge. However, compared to example 4.1, here
we need to make sure, that there actually exists a ball of ultimate boundedness with
respect to all state variables.

In order to approach that problem, we split the state variables in two parts,
namely into the ones we measure

X:=(z,0,2)T
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and into the ones we do not measure
AT
y = (m,n)

since they belong to the uncertain excitation. The equation of motion of the total
system then has the form

- B
d%i — A%+ [ (;‘)" 8%, 1)
with
) x
%= ,
Y
A= G
where
diz=1,
d =1,
ay = —[of + i)/ M,
(3!32 = [aot’f - boc'z‘]/M,

ay = —[of + 5]/ M,
da = [ao§ — bo§]/ M,
day = [aoff — bog) /],

day = —a*o + b2k] /7,
dg3 = [aof — bas)/J,

4 = —[a*af + bS]/ J,

ase = 1,
aﬁs = —k/m,
&66 = —c/m,

and gy = 0 for all other indices. The input matrix
B(x) = (b;(x)) -
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where
bai(x) = [-Bf(z — 210 — a- ©) — (2 — a®)| /M,

baa(x) = [—f5(z — 220 + b - ©) — P5(2 + bO)|/ M,
by (x) = [aﬂ'f(z —z19—a-©) +afi(z — a®)]/J,

baalx) = [~bBs(z — 220 + b~ ©) — b3 ( + bO)|/J

and by (x) = 0 for all other indices. Furthermore, we obtain
&(x, 1) = C(Hx + (1)

with
C(r)= (c,-j(t));;z} ..... ¢,

where
Cg](f) = -—k/M,

c3a(t) = —k(&(t) — a) — cu(?),
en(f) = —c/M,

¢3a(t) = —e(é(1) — a)/ M,

ess(f) = —k/M,

ese(t) = —¢/M,

car(t) = —k(£(e) - a)/J,

car(t) = —k(&(1) — a)® + co(t) (2(6) - a)]/,
e () = —e(&(r) — a)/J,

cas(t) = —e(&() — a1,

cas(t) = —k(S(8) - @)/ 7,

cas(£) = —c(&(1) — a) /7,

cot (1) = —k/m,

ca2(r) = —[k(&(t) — @) + eo(n)] /m,
ce3(t) = —c/m,

cealt) = —c(&(8) — a}/m
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and cg(r) = 0 for all other indices, and

0
0

(MQ‘ + k?]o + OC]fZ],U “+ alchz’o)/M

'y(t) = (k(é(l) _ a) — aoc’lelo + bdgzz,ﬂ)/‘]
0
i (kng ~ mg)/m

Since the uncertainties in m, k, ¢, é(f) and v(¢) are considered to be bounded, there
exist some constants g > 0 and g > 0 such that

(M) vl <eo,
(i) [IC@li<a.

This leads us to

e, NIl =[IC(H% + y()l|
< [ICEH IR+ vl
= 81”)2” + &p.

The control vector u is based on the measured state variables x and is given by
_|nx)
u= 1
pa(x)

pi{x) = — sgn(xTPB(x)ij)
= —sgn{b(x))
for j=1,2. A is a stable matrix for any arbitrary but fixed and bounded

uncertainties in m, k or ¢ in A. Hence, there exists a positive definite P € R®® for
any given positive definite Q € R®® such that

Q= —(PA 1 AP)
holds, Now we consider the modified Lyapunov derivative for the state variables &

and an arbitrary control u constrained by £1(j = 1,2). In addition — since B(x) is
linear in x — we use the property

B(x)u = ( ijl Bjuj)x
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for some appropriate constant matrices B e R™ (j= 1,2). Then

~ .| B .
L) = - 137Qx% — ﬁTP[ (:;)u + £TPe(x, 1)

< = $Amn(QIIRIE + lIR11 1B IBCx) - ul] + 11§12 lleCx, )
< = 2hnin( QURIE + P (|| ( X7, By x|+ e 01+ e 1

< = Fmin( QUK+ owax () ( 3 B e 111+ a1 1] + ) 15
< = 3 Anin (QUUIRI + v (B)( 3 1B 1511+ 21| 4+ a0 ) 1}
< (Amwe(®) - [e1 4 377 U] — $h0ia Q) K1 + somanBYISIL

Thus, we obtain
2801max (f’)

LizoW)<0 V&) > p= Tain(Q) — 2P o1 + S B[]

Consequently, provided

f?-min (Q) > 2ﬂvnuax (P)

2
&+ ZHB;'H]
=1

holds, a ball of ultimate boundedness is given by
% = {% € RY| |Irll <}

Compared to Example 4.1, the excitation (that is the crossing truck) acts on the
bridge within a finite time interval, say for ¢ € [0, T] where T > 0. At t = T, the truck
leaves the bridge and the bridge will oscillate freely (unforced and damped).

Therefore, it seems to make sense to record z(z), ©(t) and #(¢) for a certain time
mterval {[0,2] where # is somewhat larger than T say, for instance, {; = 27. The
controller is based on the subsystem (bridge)

X = Ax + B(x)u -+ e(x,y, )
with

where a; = 4y as given above, and

I=—-(PA+ATP),
él(i: t)
e(x,y, t} =

é4(f£!f)




E. Reithmeier, G. Leitinann | Journal of the Franklin Institute 338 (2001) 203-223 221

The simulation result is based on the following realisation:

Truck: m = 10* [kg] Bridge: M =10° [kg]
k=4x10° [N/m)] J=2x107 {kgm?]
¢ = 10* [Ns/m] a=b=25|m]
=1 [m] o =4 %105 [N/m} (i=1,2)
v(f) = 30 km/h (= 8.33 [m/s)) Bf =10° [N/m]) (i=1,2)
&(1) = 8.33 {m/s] ¢ o =5x10* [Ns/m] (i=1,2)
T=6[s] B = 10* [Ns/m] (i=1,2).

We choose z1y and z,5 in such a way that the bridge without truck is in an
equilibrium position at z = 0 if no control (; = 0) is applied. That is

Mg+ ocile,o + DEéTZz!() =0,

bngZ’(} - CIOC'TZI‘Q = (],

Then, because of a = b and of = ok

Mg
ZIg =220 = Zaf]c = —0.125 {m]
Fig. 12 shows the vertical deviation z(¢) for the controlled and uncontrolled bridge.
After T = 65 the bridge carries out a vibratory motion without truck. Fig. 13 shows
the angular declination @(r) for the controiled and uncontrolled case. As it can be
easily seen, the bridge changes the inclination linearly while the truck crosses with
constant speed. After the truck leaves the bridge, the inclination @ jumps back to

0.025
z [m}

0.02

pal

0.015

Ay [Py

0.01

i
0.005

0 : : :
-0.005 |

001

-0.015 -

Fig. 12. z(t) controlled (—) and uncontrolled (- --).
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x 104

6 [rad]

t 8]

Fig. [3. &(t) controlled (—) and enconirolled (---).

078
n[m]
077 |

0.76

£l

0.75

0.74 -

073

0.72

0.71

0.7

Fig. 14. y(#) for 0<¢<27T (bridge controlled {—) and bridge uncontrolled (---)).

zero in a damped oscillatory motion. Fig, 14 shows in addition the free oscillation of
the truck. Its vibration is not assumed to be controlled.
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