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5.1 Introduction

Undesired time-variant displacements of seismic structures (i.e. in scales,
balances, vibratory platforms or even buildings) are mainly caused by un-
known or uncertain excitations. In a variety of applications it is desirable
or even necessary to attenuate these disturbances in an effective way and
with moderate effort. Hence, several passive as well as active methods and
techniques have been developed in order to treat these problems. However,
employment of active techniques often fails because of their considerable
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financial costs.

We propose an affordable semiactive control scheme which accounts for
the above mentioned deficiencies. In addition, we allow constraints on con-
trol actions. Furthermore, the number of control inputs (actuators) may be
arbitrary, that is, the system may be mismatched. The scheme is based on
Lyapunov stability theory and, provided that the bounds of the uncertain-
ties are also a priori known, a stable attractor (ball of ultimate boundedness)
of the structure can be computed (Leitmann, 1979; Corless and Leitmann,
1981). In case measurement errors or uncertainties, respectively, are signifi-
cant, it is shown how the Lyapunov based control scheme may be combined
with a fuzzy control concept.

The class of structures which we will take into consideration may be
composed of “rigid” parts as well as “active” and “passive” elastic coupling
elements. We call suspension or coupling elements “active” if they are
adjustable with respect to their stiffness and damping behavior. Based on
that model we assume that a control action is related to a change in these
properties. The mathematical description of these kinds of structures is
assumed to be an initial value problem of the form

T =Ax+b(z,z,u) +e(z,2,t) , z(0)=x . (5.1)
The linear part of the mathematical model of the structure is defined by
the constant and stable matrix A € IR™"™, where n € IN denotes the state

space dimension. The control input function is assumed to be continous in
x,z and u, and linear in u, that is

b(z,z,u) € R* with b(z,z, av+pw) = ab(z, z,v)+8b(z, 2, w) (5.2)

forallz € R",z € R", v,w € R™ and o, € R. & € R™ represents the
n state variables; 2 € R” the r ”disturbances”, whose current values can be
measured, ¥ € R™ the m control variables. Furthermore, we will assume
that the m vectors b(w, 2,1;) , (j = 1,...,m) are linearly independent for
allz € R™ and 2z € R™:

= rk[B(z,2)]=m VY (z,z) e R"xIR" (5.3)

where i; is the unit vector in the j-th direction, i7i; = 0 for i 3 j, that is
u = Z;n=1 Ujij and

Bz, z) := [b(m,z,il),...,b(i,z,im)] e R™™ | (5.4)

That is, we assume that the control variables are not redundant or, in
other words, every control variable acts in a different direction. The control
variables are supposed to be constrained by lower and upper bounds:
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U:= [ul,mm’ul,mai‘] X.o..X [um,min: um.mam] . {(5.5)

This restriction reflects the fact that applied control actions in practice are
restricted because of technical reasons. Without loss of generality and for
the sake of convenience, we may assume that

U=[-1,1]x...x[-1,1] . (5.6)

All unknown or uncertain "excitations/effects” are modelled by

e R*xR xR B,:={{cR"|||¢§ <neRs} . (57)
That is. all uncertainties are assumed to be bounded by the compact ball
B, with radius n:

le(z,z, )| <ne€Ry V (z,z,5) e R" xR xRy . (5.8)

. We assume also e is at least piecewise continuous. Furthermore, we assume
that the state x as well as the disturbances z are available via some mea-
surement devices. In case of seismic disturbances, z may be determined
by seismograph records. That is, © and z are considered as plant output

y = (x.z) (see Figure 5.1).
lz

u Plant y
(state x)

Figure 5.1: Input and output variables of the plant.

5.2 Control design

5.2.1 Lyapunov approach

Following the controller design in (Leitmann et al., 1993; Leitmann, 1994)
we ask for a feedback

p:R"xR =U, (zz2)—u=plxz)) (5.9)
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such that. for any given positive definite matrix P € R"™", the time ceriwa-

tive of
lz(t)lp = 2T (@®)Px(t) . telR. (5.10)

is as small as possible for any:

(i) response t — x(t) ,

(ii)  disturbance z(t) ,

(iii) admissible uncertainty e(x{z), z(t).t),
(iv) and time ¢,

and for all admissible choices of control =(¢). This means that, based om

the Lyapunov function candidate

V(@) =5 allp [5.111)

the feedback p we are seeking is one which minimizes the Lyvapunor deriwa.-

tive

Ligznw) = zTPlAz+b(z,z.u)+ e(:c-z:.t)]

(3.92)
= TP[Am_i_Z ;z:z1j)+e(:czt)]

with respect to u for every (z, z,¢) €¢ R" x IR” x IR.. In other words,

Lz zy(p(®, 2) =min {Ligzy(w) | weld} . [5.13.)
Equation (5.12) can be written as
m
Lizzn(u) =al@) + > uibj(z. ) + (@, z.1) (3.14)
i=1
with
a(z) = —*%:DTQ:L' where @ = —(PA+ ATP): ,
bijlz,z) := :L‘TPb(a:,z,ij) where i1 = 0
(5.15)
and

c(x,z,t) ==z’ Pe(z,2.t) . (5.1.6)
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Then

Ujmin if bj(iE,Z) >0
U ij(iE,Z): (jzl,,...,m) (317)
Ujmar i bj{x,2) <0

Using the normalized control space U defined by equation (5.6) we ob-
tain
- u; = pjlz, z) = —sgnlb;(z, 2)]. - (5.18) -

The performance of the controller may be enhanced additionally if we
choose P appropriately. The smaller the Lyapunov derivative, the stronger
the "tendency to the origin” of ¢ — z(t). Our objective in that case would
be to strive for a highly negative value a(z) in equation (5.15). That, on
the other hand. can be done by choosing a suitable positive definite @ and
solving the algebraic Lvapunov equation

Q=—(PA+ATP) (5.19)

for P. Since A is assumed to be stable. the matrix P is positive definite.

5.2.2 Stability

Using the control scheme developed in Section 3.2.1 it is possible to de-
termine a region (compact set) toward which any realization £ = z(t) is
attracted and wherein it remains once it has crossed the boundary of the
“attractor”. In order to analyze this situation we employ the controller p
(cf. equation (5.18)) in expression {53.14). This leads to

1 ke 3
Lixznplx, z)) = —§mTQ:v - Z b;(x, 2)| + =7 Pe(z,z,t) , (5.20)
Jj=1

where zTQz is a positive definte quadratic form. Hence, the form is
hounded by the minimum and maximum eigenvalue Amin and A,qz Of Q.
That 1s,

n

ﬁ(x.z.t;(P(m.-z)) S _%/\mm(Q)Hxnz - ; ibJ(fBZH + ||€13”“P|H|€((E, z:t)zl

(5.21)
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or, neglecting the second term, employing inequality (5.8) and using the
upper bound Apaq(P) of || P

. 1 e -
ﬁ(a:,z,t)(P(fBaz)) S '"'2"/\mm(Q)H-T||2 + Amaz(P)n“:ﬂ” . (322)

Thus, we obtain

Liz,znpx,2)) <0 v |z]l > r (5.23)
where
2- n- /\maw(P) -
— .24
/\mm(Q) (D )
X,

Figure 5.2: Ball of ultimate boundedness.

The radius p of the ball of ultimate boundedness (cf. Figure 5.2) is
therefore determined by

)\ma:c (P)

p=r" _—m—)\min(P) , (5.25)

and any response t — z(t) which enters

B, = {€ e R" | ]| < p} (5.26)
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say at t = t* remains in B, for all ¢ > ¢* . It should be noted that
B,, with radius given in (5. 20) is the ball of ultimate boundedness for
the uncontrolled system, since the terms Z 1 |bj(x, z)] were neglected in
(5.21). These terms reduce the right-hand 31de of (5.21), except at (z,z)
where the b;(z,z) = 0 for all j. In other words, the control acts to reduce
the radius of B, as well as the rate of convergence.

5.3 Measurement errors

5.371 General aspects

A change in the control variables u; takes place only if the indicator function
bj, defined in (5.15) changes its sign. That is, a change in u; occurs if a
response t — y(t) = (x(¢), z(t)) crosses

I, .= {(z,2) e R* xR" | by(x,z) =0} (5.27)

We assume that II; denotes a differentiable manifold of dimension n+7—1;

otherwise the space IR™ xIR™ would not be separated by II; into two disjoint
parts. Furthermore, then

g; - 1 -R'xR" , €—=y:=g;&) (5.28)

defines a unique and differentiable embedding of II; into R™ x IR" (cf.
Figure 5.3).

Rr

Figure 5.3: Embedding of II; in R™ x IR".
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5.3.2 Fuzzy concept

Depending on the accuracy of the measurement devices there is always
uncertainty concerning the measured variables. The assumed maximum
difference between actual value y and measured value g may be expressed
by Ay := (Azy, ..., AZp, D21, -1, Az)7T. such that

NAyllar =1 . (5.29)

|- llar : R® x R™ — Ry is some norm which takes care of the tolerances
and scales in measurement for the different variables. For instance, it might
be defined by

lyllar = (nir) ;(f;) +; (T)

As mentioned before, a change in control u; will occur only on the
switching plane IT; for j = 1,...,m. Hence, we define uncertain transition
regions 7; (cf. Figure 5.4) as follows: if the measured value ¢ indicates
switching, then the actual value y belongs to the transition area, that is

(5.30)

gell; = wyeT;. (5.31)

Figure 5.4: Uncertain transition area 7; and membership function ;.
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The distance between ¢ and II; is assumed to be the perpendicular to the
tangent plane Ty-II; at an appropriate point ¥y~ € II; (cf. Figure 5.3).
According to that definition. y* is determined by solving the following
algebraic equation:

[Dg N (@ —g;(6)=0 = €@ = y =g;(@) (532

Using equation (5.31) we are able to define 7; via

Ti={geR"xR" | [[§—g;( @l <1} (5.33)

In order to replace the designed Lyapunov controller on 7; by some
appropriate fuzzy controller we use relationship (5.32) as a fuzzyfication
process. Within 7; the choice of the control variables may be right or
may be wrong. If the decision is right the choice will be the best case.
if the decision is wrong the choice will be the worst case. Therefore it
seems very reasonable to defuzzify the transition area in such a way that
there exists a linear relationship (membership function) within 7;. Or. in
terms of probability, we assume a linear distribution across 7T;, which says
that the chance for  to be right or to be wrong is 50% on the switching
surfaces and 100% on the border of 7;. In between it is supposed to be
linearly increasing or decreasing, respectively (cf. Figure 5.4). Hence. the
membership function is defined by

p:Ti=U g py) (5.34)

with

0 if @Eﬂj

|g ~y*llar -sgnfbi()] if gell -7,
(5.35)
Of course, for each j there exists a different y* which needs to be determined
via equation (5.32). The modified continuous state feedback is then given
by

e) if ||y =y liar <1
pi(9) = | (5.36)
sgnip; ()] if g -yl =1
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5.4 Example

An example of the class of systems modelled by (5.1) is a structure with
two storeys as shown in Figure 5.5.

m,

= k2l G

Figure 5.5: Structure with two storeys.

We will consider that example in order to demonstrate the efficacy and
robustness of the proposed control scheme. In that case, the spring and
damping coefficients k; and ¢; are linear functions of the applied control
action v; which, for instance, could be the voltage applied on suspension
elements filled with so called smart materials:

kj(vj) = O.‘;" +JB;'C'U.§ (.7 = 172) (537)
cilv;) = of + Bfv; (7=12) :
where a;?,aj, 6;-“ and B € IRy are constant parameters and the voltage

v; for spring/damper j can be varied between 0 and ¥; > 0. The linear
parameter shift

uj = [2- (%) - 1] - (5.38)

transforms v; into the normalized control variable u;. The realization of
the disturbance z considered here is a periodic ground displacement

t > zo(t) := &, - sinf[vi]. (5.39)

The equation of motion is given by
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& = Az + [b(z, z,i1)u1 + bz, z,iz)us] + e(z, 2, 1) (5.40)
with
0 0 1 0
0 0 0 1
A= 1 L k ol 1 c Iy _EY_:C;,
—m—l[al + aj] e —T—ﬁT[al + o] p—
o7 _a3 o as
me ma Fe13] -—-m2
and
- 0 -
0
b(:B, Z,i1) = ] s
Br _ _ B oy
~ ok (w1 — @) — - (za — ge)
A 0 i
I 0 ]
0
bz, z,i2) == p e ;
(2 — z1) + 7 (24— 1)
k c
i %(:1:1 —z2) + %(ws —z4) |
0 Iy 1
0 I Z2
e(x,z,t) == k e x = : = ;
¥ %-11. . + ;i—i—we ) $3 zl ?
0 L4 o))
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In earlier work. e.g. Kelly et al. (1987) or Leitmann (1994). it is assumed
that r.,Z, are not measured but that their bounds are known: in that
event. I, and . contributes to uncertainty in e(x. z. ).

The indicator function b; may be expressed by

bjly) =2"PBjy . (j=12). (5.41)
where B; € R are constant matrices. In addition
rk[B;] =1 (5.42)

holds for j = 1 and 7 = 2. Hence, an appropriate Householder transforma-
tion H; € R™" leads to

bily) = (zTPH]) - (H;B,y)

= (@TPHje)-(c'y) (5:43)

where (i} H j‘l = H'}r ,
(i) H;Bjy=(cyler .
(iii) c=const. ¢ R"™ |, e;:=(1.0..... 0)T e R" .

Taking this into consideration, we obtain finally the following statement:

bi(y) =0 <= mTPH?el =0 and/or cfy=0. (5.44)

That is, the manifold I; degenerates into two planes whose intersection
contains the origin 0 (cf. Figure 5.6). That means, in particular, that

The following simulations are for initial value problems with xy = 0
(cf. Equation (5.1)). The dynamical system is integrated for 15s and an
“amplitude™ of each state component z; is defined as the maximum of its
absolute value during the final 5s. All results are based on the parameter
set (1 = 1,2):

7, =10°V, m; =10kg, 2, =0.02m

and
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m Vm m P,

The fuzzy controller is defined according to equation (5.36) with

Iyl = L[y == 2 . : L[ 2

Yl = 442 ] A.’L'l A,L_? Ali Ao

. _ . 1 - -3+ i'e 2
4 42 Am@ A*‘Lr:

where Ao;. Azo, Ady, Ads, Ar, and A, are the maximum errors which
may occur during measurement. They are given by

L

Ary 5-107%m
| Az | | 3-1077m g Az ] _[5107%m ]
A= Ai [T 0am/s and - 2z '—{_\i:e}_[ 0.1m/s |
Ads 0.1m/s

Figure 5.6: Switching plane II; for u;.

The results are shown from Figure 5.7 to Figure 3.10. Each diagram
shows the four different cases:
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Only the Lyapunov controller is used.
e The Lyapunov and Fuzzy controller are combined.

¢ Constant maximum damping and maximum stiffness is applied (u; =

uj,ma:t:)'

No control at all is applied (u; = 0).

0.5 T T T T T | | T l
] Lyapunov —
0.45 Lyapunov + Fuzzy — 7
04k no control ~— |
) U = Umar - -
0.35 - . ' i
0.3 |
Al
0.25 .
[m]
0.2 _
0.15- -

0.1
0.05

0 3 10 15 20 25 30 35 40 45 50

v/[1/s]

Figure 5.7: Maximum amplitude 4; of z; versus excitation frequency v.

As one can easily recognize, there is a significant suppression for all
state components z; in the controlled cases. The cases “constant minimum
stiffness and damping” and “constant maximum stiffness and damping” are
significantly worse near their resonance frequencies. Although, the “pure
Lyapunov controller” leads to the best results, it does not account for mea-
surement errors. Taking into consideration that assumed measurement er-
rors may rise up to 25% of the ground diplacement z., and up to 50% for
low frequencies v, the combined “Lyapunov and Fuzzy” approach seems to
be a very reasonable choice.

Of course, the smaller the Euclidian norm ||Ay|| of the maximum mea-
surement errors Ay; the smaller the transition areas 7; around the switching
planes II; and the smaller the difference between the Lyapunov controller
and the combined control ”Lyapunov + Fuzzy”.

It is important to note that the significant suppression of time variant
displacements of the state components z; takes place in resonant frequency
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Figure 5.8: Maximum amplitude A3 of z3 versus excitation frequency v.
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Figure 5.9: Maximum amplitude Ay of &, versus excitation frequency v.
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Figure 3.10: Maximum amplitude A» of 22 versus excitation frequency ».

ranges. and these.are exactly the frequency domains where suppression in
most cases 1s really wanted. Furthermore. it is important to mention that
any time delay during feedback control response mav he modelled by an
addirional uncertainty in all measured state space variables. It should be
also mentioned at this point that a possible chattering effect along II; will
he suppressed by adding the Fuzzyv controller near the switching surface.
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