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ABSTRACT

The mathematical fundamentals of some black box calibration procedures for fringe projection system are intro-
duced. These calibration procedures are based upon & direct mathematical transformation between the measuring
volume and the image data obtained with a camera. Aided by a mathematical model of a fringe projection system
varijous calibration procedures are compared to each other in numerical simulations. The numerical simulations
facilitate statements about the attainable measuring error depending on the calibration procedure and system
parameters.
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1. INTRODUCTION

Fringe projection systems provide a fast and contact-free facility for measuring free-form surfaces in three di-
mensions. For accurate 3-D coordinate measurements the calibration of the entire fringe projection system is
essential. The calibration has to establish the relationship between the 3-D coordinates in the measuring volume
and the 2-D coordinates of the camera array associated with the projected fringes. Therefore, the used calibra-
tion algorithm directly determines the achievable measuring uncertainty. On the other hand, every calibration
algorithm also depends on several measuring parameters, such as the triangulation angle or the measuring vol-
ume, for instance. So far, no systematic study has been carried out comparing the different calibration methods.
The emphasis of this paper is put on direct calibration methods, also called “black box” methods, which are
usually based on polynomial functions. The theoretical advantage of such methods is that they implicitly take
into account all error sources, such as lens distortions, for example.

In contrast to that, a physical model! of the fringe projection system has to be drawn up for geometri-
cal/physical calibration procedures. The calibration of the fringe projection system is used to determine the
unknown parameters of the model that have a physical meaning, such as the inner and outer orientation of both
the camera and the projector.

Usually, a fringe projection system consists of a projector as active unit and one or more cameras. In the
following, we will talk about systems with only one camera. The projector casts time-wise coded fringe patterns
(e.g. Gray-code and phase shift?) into the measuring volume while the camera observes the measuring volume.

'The fringe projection system gathers all information about the surfaces of the measuring objects with the
camera. Thus, all error sources of the fringe projection system ultimately accumulate in the pixels of the camera
image. The information from the camera image plus predetermined control points inside the measuring volume
are the input parameters of the “black box” calibration algorithms.

For the first time a virtual fringe projection system was implemented on a computer. With this virtual
fringe projection system the calibration procedures can be evaluated with respect to their attainable measuring
error regardless of the input parameters with failures of a real fringe projection system. Based upon this model,
the flaws of every calibration method can be investigated by the means of numerical simulations under ideal
conditions, ie. error-free. Moreover, the impact of any single error source or the variation of a measuring
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parameter on the measuring uncertainty can be estimated by the variation of the model parameters of the
virtual fringe projection system.

Some “black box” calibration methods (BBCM) are introduced in the following chapter. Afterwards the
numerical simulation of the virtual fringe projection system is addressed.

2. “BLACK BOX” CALIBRATION METHODS
At first, some helpful definitions are established. Note that here all vectors are column vectors.

The size of the measuring volume is given by the optical characteristics of both the camera and the projector.
It is not clearly demarcated (e.g. due to the depth of sharpness). In a mathematical sense the measuring volume
M is & subset of the 3-D space, i.e. M C R®. A point inside the measuring volume is referred to as (z,y,2) € M.
Furthermore, an object coordinate system with coordinates X, Y and Z is introduced, with its origin in the
center of the measuring volume and the Z direction parallel to the optical axis of the projector. x¥ = (x,y, z) is
a point of the latter coordinate system as well.

A sequence of coded light generated by the projector is cast on a measuring object that is brought into the
measuring volume. Information about the geometrical dimensions of the measuring object is obtained from the
light of the fringe sequence that is reflected from the surface of the measuring object. The amount of light that is
reflected from the surface in the direction of the camera provides an relationship between the place of reflection
in the measuring volume and the corresponding camera pixel (4, 7) due to the time-wise coding of the fringe
sequence. All in all, the camera provides a triple (4, j, ¢} € B C R® for the point of reflection p € M, where ¢ is

the phase based upon the time-wise coding *.

The relation between points p € M and corresponding camera triples b € B must be known for taking
measurements. The mapping between M and B is accomplished by a calibration function J. The unknown
parameters of f, which are also referred to as calibration parameters, are determined by the calibration procedure.

In the case of BBCM the calibration function f is a merely mathematical mnapping, i.e. the function directly
approximates the relation between the camera triples b and the object points p. In general, the approximation
function is a polynomisl. The calibration parameters are the corresponding coefficients of the polynomial. During
the calibration procedure points with known coordinates inside the measuring volume M must be provided. This
can be done with a calibrating device that provides control points with superior accuracy, i.e. the deviations

are less than the resolution of the fringe projection system. Often a calibrating plane with plane spread markers
and known marker distances is used.

The plane provides only 2-D information. However, information about the entire 3-D measuring volume
must be furnished to the “black box” procedure by shifting the calibrating plane. So it is stepped through the
measuring volume in the direction of the normal vector of the calibrating plane {usually along the optical axis
of the projector). The positions and phase values of the markers in the camera images must be calculated by
means of image processing algorithms for every step of the calibrating plane. For extended markers the position
can be determined with subpixel methods, i.e. the resolution is better than the camera pixel resolution.

Stepping the calibrating plane through the measuring volume generates a 3-D grid of markers. The number
of markers on the calibrating plane and the increment of each step determine the density of the 3-D grid inside
the measuring volume.

2.1. Mathematical description

All calibration procedures that are introduced here are based upon polynomials as a mapping between points
of the set M (measuring volume) and points of B where the order of the polynomial should always be IV for
simplification. Furthermore, the following definitions apply.

*Actually the image pixel are natural numbers but with subpixel methods they can also be real numbers.
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Coeflicient vectors contain the coefficients of the polynomial. They are denoted as symbols from the beginning
of the alphabet:

T

a” = (000,100 %010, 3001, G200, 3110, - - - , Ao )
T

b = (bo,bl,bz,...,bN)

Contrary, vectors containing variables or coordinates - they are referred to as variables vectors - are denoted
as symbols from the end of the alphabet:

ul = (1L,X,Y,Z, X% XY,...,ZM) ‘

vl = (L4,5,6,3%,4,...,¢")
wh = (1,4,4,2,i,44,...,2%)
pT = (17(;51'.3': E;p g)

So the various BBOM can be formulated as follows.

s Method A

For every coordinate X, Y, Z of the object coordinate system a separate polynomial that is a function of
(1.4, ¢) is used. It is exemplified for the coordinate X. The remaining coordinates are processed likewise.

N
X= fX,A(i:ja QS} = Z Gefdy iajﬁqb? = VT +4, V,Od,,@,’y eN (1)

v=0
v=a G+

This procedure is put to use in Ref. 3, for example.
o Method B

In this case, the Z coordinate is calculated in a different way. For every image point (4, §) of the camera a
separate polynomial in the direction of Z is used. This polynomial is only a function of the phase values

iy of the image points that are obtained with every step of the calibrating plane through the measuring
volume. Consequently, the phase values ¢i5 of each camera pixel (4, §) for each step of the calibrating plane
have to be gathered! Thus, for every camera pixel (3,7} a polynomial of a variable ¢y is obtained:

N
Zij = fii(55) =D by, ¢% =pT-b, veN (2)

r=0

The polynomials approximating the coordinates X and Y are the same as in method A. Thoﬁgh the
polynomials are not s, function of ¢ but of the coordinate Z in order to enhance the numerical stability of
this method. Consequently, for X , for instance, applies:

X = fx,p(5,§,Z2) =w" -a 3)

¢ Method ¢

Here, for 4, j and ¢ each time a polynomial is used which is a function of the coordinates X , Y and Z.5
Thus, the polynomial for 4, for instance, reads:

N
3:fq,(X,KZ) - Z aa-@'Y'XaYﬂZT__'uT'aJ V,a:ﬁ)7€N (4)

u=()
v=a-+8+y
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In summary, all three methods lead to equations similar to
g=tT.d (3)

where d is a coefficient vector, t is a variables vector and g is a scalar.

The goal of the calibration procedure is to determine the vector d, i.e. the coefficients of the polynomial.
This is accomplished by solving an over-determined linear system of equations. Therefore, it is necessary to
gather enough triple b € B with the camera. In this case, every variables vector ti, where k=1...m, m € N,
has & corresponding values gi. Additional premises should be m > dimd = d and using the Ly norm. The
result is the linear least squares problem

la— Adjlz £ min (6)
where A is the (Vandermonde) matrix and q is the vector:
ti di
A= t? € Rkxd and q= q;z € R*
t?; q‘k

Equation (6) can by solved employing a QR decomposition. The result is the coefficient vector d that also
determines the corresponding calibration function.

- 2.2, Calibration of measurements

Having taken a measurement, the corresponding 3-D object points (z,y, 2) € M have to be calculated from the
measured triples (i, j,¢) € B of the camera. For this Teason, the object points have to be calculated by means of
the calibration function f. Methods 4 and B directly provide the object points via equations (1) or respectively
(2} and (3) from the camera triple (4, §, ¢).

On the other hand, method C leads to a non-linear problem, because the object coordinates are contained
only implicitly in equation (4). For solving the non-linear problem, an initial estimate xJ = (zq, 3o, 29) must be
furnished for every measured camera triple by, = (ks Tt Dr).

Apparently, one can easily process measurements according to methods A and B, because only linear functions
are used for both calibration and measuring. However, a compensation of stochastic errors (e.g. the noise of the
camera) is only possible with method ¢ (the least square fit is based upon the camers triples with errors). But
the calibration according to methods A and B can be subjected fo a considerable amount of measuring errors
(the least square fit is based upon the object coordinates that are almost ideal anyway).

On the other hand, one does not have to solve a non-linear system of equations.

3. NUMERICAL SIMULATION

In order to evaluate the attainable measuring error of the various BBCM a numerical simulation of a fringe
projection system was programmed in Matlab. The simulation provides information about the influence of a
variety of parameters on the virtual fringe projection system.

The simulation is based upon a model of a projector and a camera under ideal conditions. In both cases the
optical axis is at right angles with the camera plane and the projecting plane of the projector. The optical axes
intersect at the center of the measuring volume which is also the origin of the object coordinate system, Fig. 1.
The rows of the camera plane parallel the plane of the optical axes. The same applies for the projector plane. A
central projection is used for the camera and the projector. The camera brakes down into discrete pixels while
the projector provides a continuous fringe pattern in the direction that parallels the plane of the optical axes.
The number of fringes on the projector plane is constant in vertical direction.

Starting with this ideal setup, single conditions can be altered, such as the quantization of the determination
of the marker positions on the camera plane according to the subpixel methods of a real fringe projection system.
Other possibilities are adding noise of a defined parameterization to some components or using optical distortions.
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Figure 1. Setup of the virtusl fringe projection system

The input parameters used to calculate the calibration parameters are determined in the same way as for a
real fringe projection system. Separate object points (markers) or planes (for method B) are brought into the
measuring volume at a defined position. For every camera pixel of the camera plane the position and the phase
values are obtained. The camera points that correspond to the markers are determined by a direct projection
of the markers on the camera plane (regardless of the resolution of the camera). The relevant phase values are
determined by a direct projection of the markers on the projector plane.

In order to determine the measuring error, separate spheres are brought into the virtual measuring volume.
Based on 2 central projection and starting from the focus point of the camera in the direction of the measuring
volume the intersecting point with the sphere is calculated for every camera pixel. Afterwards, the related phase
at the intersecting points {the part of the sphere that is bidden from the projector is omitted) is determined as
described above. Here the principle of tracing a ray back to its origin, i.e. a raytracing algorithm, is applied.
The same principle is applied for phase values on a calibrating plane as for calibration method B.

The result is a set of points in M with corresponding triples b; € B, i = 1... », p € N. A calibration of
this set of points (i.e. of the measurements) based upon the values b; and the previously calculated calibration
barameters provides the 3-D object points 0; € M. From the object points o; a least square fit for a sphere
is done that provides the center and the radius of the sphere. From there statements about the calibration
deviation can be concluded. ' :

3.1. Numerical calculatjons'

In this section some results of the numerical simulations are outlined.

The simulation was accomplished for a measuring volume of 120 x 90 x 40 {the unit is set to one). The ratio
of the edges is the same as of a on-site fringe projection system available for experimentation.

Further parameters for the simulation are the triangulation angle of 30° between camera and projector,
800 x 600 camera pixels on the camera plane, 20 markers in direction of X » 15 markers in the direction of ¥ and
10 markers in the direction of Z on the virtual calibrating plane, 1614 of which are detectable with the camera
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image and serve as control points. 9 calibrating plaries are used for method B. The order of the polynomials is
always IV = 5.

The virtual test sphere has a radius of R = 10 and the center is always at the origin of the object coordinate
system (center of the measuring volume), i.e. r. = (0,0,0) € M. The influence of some parameters on the
deviation of measured values from ideal values is calculated and illustrated for methods A-C. Each time the

deviation of the center of the sphere, i.e. Ar, = ire —Teate|, and the deviation of the radius, i.e. AR=R~R

cale
is given.

At first, the influence of the order of the polynomial on the deviation is calculated. Note: The absolute value

of the deviation AR of the sphere using an order one polynomial is always much bigger than two and, therefore,
omitted.
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Figure 2. Deviation depending on the order of the polynomisl

Method B shows good behavior regarding the deviation of the center of the sphere, that is a result of the
accurate determination of the Z-coordinates.

In the second example the number of markers on the calibration plane is altered. The relation between the
markers in X, Y and Z direction is 4:3:2, as above. If a number of markers becomes fractional, it is rounded up.

Less than 12 markers in X-direction cannot be handled. In this case, there are too few equations for solving the
least squares problem.

G Method A
$ Method 8
8 Method G

[
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Deviation of radius AR

[&1
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Figure 3. Deviation depending on the number of markers
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re(p) = (50,35, 10)T§ e M, P=0,....5

Method C shows a quite linear characteristic in this figure, that again is a result of the accurate calculation of
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Figure 4. Various positions p of the test sphere in the measuring volume

the Z-coordinates. Concerning the other two methods, A tends to become less accurate when going in direction
of the boundary of the measuring volume.

having to solve many non-linear systems of equations method (s comparatively slow during the calibration of
measurement values, whereas method A4 is comparatively fast, altogether.

4. CONCLUSION

thermore, the simulation provides statements about the influence of system parameters which in reality are not
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