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Abstract— To date, the assembly of optical systems is still
not fully automated. Automated assembly can be facilitated by
having an optical simulation at hand which, in turn, requires
knowledge about the current state of the optical system.
Due to the strict demands on the positioning tolerances, the
uncertainties of the positioning system play an important role
and lead to non-negligible deviations from the nominal poses.
Therefore, the actual poses of the optical components need
to be estimated in order to correct misaligned components.
Furthermore, it is beneficial to develop methods that utilize
the dedicated primary sensor and to avoid additional external
sensors.
In this paper, we employ a macro-micro manipulator for
moving optical components and utilize filtering methods to
realize an in-process state estimation. For this, the uncertainty
of the positioning system as well as sensor noise need to be
identified which lay the groundwork for methods such as the
Extended Kalman Filter, Iterated Extended Kalman Filter,
Unscented Kalman Filter, or Particle Filter. In this paper, we
compare these methods in simulation with current nonlinear
approaches from literature with respect to the estimation error.
Experimental verification is carried out by a macro-micro
manipulator comprised of a Cartesian piezo-driven 3-DOF
positioning system attached to a 6-DOF industrial robot. With
the proposed filtering approach and macro-micro manipulator,
the pose of a bi-convex lens is estimated via a wavefront sensor.

I. INTRODUCTION

Optical systems have many fields of application such as
high-resolution length measurement or tactile-free surface
reconstruction [1]. However, a fully automated solution for
the assembly of optical systems does not exist yet. In general,
such systems have strict demands on positioning tolerances.
Placement of optical components in the assembly process
is subject to the uncertainty of the (often specialized and
expensive) positioning systems which are employed. Poor
knowledge of the current state (i.e. the component poses)
of the optical system impedes the applications of positional
corrections to rectify the system during the assembly. This
leads to fine-tuning of the optical components via active [2],
[3] or passive [4], [5], [6] adjustment mechanisms after the
assembly is completed.
Current state-of-the-art in optical system identification relies
mostly on a nonlinear cost function based on Zernike coef-
ficients [7], [8], [9]. The cost function can minimized either
via a gradient-free approach (NGF) approach, or by utilizing
the gradient’s information, via a gradient-based approach
(NGB) approach [10]. Alternatively, neural networks [11]
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can be used but the network needs to be trained again after
altering the optical system (e.g. inserting a new component
into the optical path). The aforementioned methods do not
account for sensor noise and positioning uncertainty and the
identification process might result in local minima due to the
optical sensitivity [12]. Related work [13], [14] utilize an
Iterated Extended Kalman Filter (IEKF) based on principal
component analysis of a CCD sensor image to account
for noise and uncertainty. To achieve a high-dimensional
sensor decomposition, Karhunen-Loève modes are chosen
therein. More recently, alternative sensors (so-called position
sensitive devices [15]) are intentionally developed for the
assembly of optical systems.
In this paper, we propose a method to obtain the current state
of an optical system during the assembly process by employ-
ing a macro-micro manipulator and filtering techniques based
on wavefront sensing. Macro-micro manipulators [16] (also
micro-nano manipulators) combine the advantage of a large
workspace of the macro system (here necessary for moving
optical components) and precise local motion by a micro sys-
tem (here for the identification of optical component’s pose).
In general, the field of application for such systems ranges
from milling [17] to medical applications (minimally invasive
surgery [18] or inner ear drug delivery [19]). Macro-micro
manipulators utilizing optical signals as feedback for the
assembly have been considered for example for packaging
micro opto-electro-mechanical devices by visual servoing via
a microscope camera [20]. However, therein, state estimation
is not considered. Robotic systems in combination with a
wavefront sensor have not been investigated yet for the
estimation and assembly of optical systems. As methods
for hand-eye calibration of wavefront sensors have not been
developed yet, additional uncertainty is brought into the
kinematics, which poses an additional challenge.
Over time, Bayesian estimation approaches have evolved as
the method of choice for estimating the state of dynamic
systems subject to noise [21]. If the noise is primarily as-
sumed to be Gaussian, then Kalman filtering is preferred. On
the other hand, if the noise is (primarily) non-Gaussian, the
Particle Filter (PF) or the Gaussian sum filter are preferably
used. In this case, better results might be achieved at the
price of additional computational effort. Alternatively, an
Unscented Kalman Filter (UKF) is expected to provide a
balance between the low computational effort of the Kalman
Filter (KF) and the high performance of the PF [22], [23].
These filtering approaches have generated an immense va-
riety of submethods and the interested reader is referred to
literature for an extensive overview on the numerous variants
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of the KF [21], [24] or the PF [25]. These methods also find
application in a large variety of core robotic tasks and have
been extensively investigated in these contexts such as robot
localization to estimate the state of mobile robotic platforms
[26] or for estimating the geometrical parameters (positions,
orientations and dimensions) of objects for manipulation
tasks [27]. More examples for the application of filtering
in robotics are given in [24].
For the optomechatronic state estimation, we will evaluate
and compare four different filtering techniques in this paper:
The Extended Kalman Filter (EKF), the IEKF, the UKF, and
the PF. For filtering, the underlying probability distribution
of the macro-micro manipulator positioning uncertainty as
well as sensor noise need to be known or at least estimated.
By performing repeated measurements and fitting Gaussian
distributions to these, covariance matrices can be obtained
which allow to find a process and noise model to enable the
aforementioned state estimation with filtering techniques.
In this paper, a simple optical system will be utilized as
demonstrator consisting of a laser, a bi-convex lens, and a
wavefront sensor to validate our proposed approach. After the
identification of process and sensor noise, the simulation is
used to compare filtering methods with nonlinear approaches.
Experimental verification is then carried out to estimate the
pose of a lens between a laser and a wavefront sensor.
This paper is structured as follows. In Sec. II, optical
preliminaries are given for uninitiated reader which lay the
groundwork for the estimation approach. Sec. III outlines
the proposed optomechatronic state estimator to obtain the
current state of the optical system. In Sec. IV, we provide re-
sults from the identification of the process and measurement
covariance matrices, simulation to test the approach against
ground truth, and experimental results. Sec. V concludes the
paper and gives a brief outlook.

II. OPTICAL PRELIMINARIES

In this section, a brief overview on the optical preliminar-
ies (which is mostly adopted from [28], [29]) is given for
readers unfamiliar with optics. These form the foundation
for the upcoming sections.

A. Wavefronts & Zernike Polynomials

Wavefronts are defined as surfaces of equal phase (or
multiples of 2π). It is possible to express any wavefront by a
linear combination of so-called Zernike polynomials. Zernike
polynomials are circular polynomials which are orthogonal
over the unit disk. They can be conveniently expressed in
polar coordinates by

Zmn (ρ, θ) =

{
Nm
n R

m
n (ρ) sin(mθ) for m < 0

Nm
n R

m
n (ρ) cos(mθ) for m ≥ 0.

(1)

Therein, Nm
n is a normalization factor, Rmn a radial

polynomial, 0≤ ρ≤ 1 the normalized radial distance, and
0≤ θ≤ 2π the azimuthal angle. The integer n (polynomial

order) is nonnegative and the integer m (sinusoidal fre-
quency) is chosen such that n− |m| is even and nonnegative
[30]. The radial Zernike polynomial Rmn (ρ) is defined as

Rmn (ρ) =

(n−|m|)/2∑
k=0

(−1)k(n− k)!

k!
(
n+|m|

2 − k
)

!
(
n−|m|

2 − k
)

!
ρn−2k

and the normalization factor Nm
n is defined as

Nm
n =

√
2(n+ 1)

1 + δm0
.

Therein, the Kronecker delta δm0 is defined as

δm0 =

{
1 for m = 0

0 for m 6= 0.

Noll’s sequential indexing [31] facilitates the serial expansion
of a wavefront by utilizing a single index (Zmn →Zj) for the
Zernike polynomials. Following this single indexing scheme,
we can expand the wavefront Φ in polar coordinates as

Φ(ρ, θ) =

nz∑
j=1

zjNjZj(ρ, θ) =: zTZ(ρ, θ). (2)

Therein, the j-th Zernike coefficient zj is associated with
the j-th normalized polynomial NjZj which can be cast
into vectorial form with a vector of Zernike coefficients
z∈Rnz and normalized Zernike polynomials Z∈Rnz . A
list of the first ten Zernike polynomials (which are later
utilized in the simulation and experiment in Sec. IV) with
their corresponding common names is given in Tab. I.

B. Shack-Hartmann Sensor

A Shack-Hartmann sensor (see Fig. 1 for a schematic
depiction of the working principle) is capable of recon-
structing wavefronts. An incoming wavefront is projected
to a CCD sensor with the help of a microlens array. A
planar wavefront will form dots at the sensor plane which
are centered w.r.t. their microlenses. If the wavefront is not
planar, displacements of the formed dots from their nominal
center occur. From the dot displacements, it is possible to
reconstruct the wavefront with a least-squares optimization
procedure [32].
For the remainder of the paper, we will only use the Zernike
coefficients z to describe the wavefront since they allow for
a concise and complete description.

III. OPTICAL STATE ESTIMATION

This section presents the theoretical ground work for
the state estimation of optical systems with the help of a
mechatronic positioning system.

A. State-space Equations

The overall system can be written in state-space form as

ẋ = f(x,u) + w (3)
z = h(x) + v (4)
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TABLE I: Utilized Zernike polynomials with corresponding coefficients, normalization factors, and common names ordered
by Noll’s sequence.

Zernike coefficient zj n m Normalization factor Nm
n Zernike polynomial Zj = Zm

n (ρ, θ) Common name
z1 0 0 1 1 Piston
z2 1 1 2 ρ cos(θ) Tip
z3 1 -1 2 ρ sin(θ) Tilt
z4 2 0

√
3 2ρ2 − 1 Defocus

z5 2 -2
√
6 ρ2 sin(2θ) Oblique astigmatism

z6 2 2
√
6 ρ2 cos(2θ) Vertical astigmatism

z7 3 -1 2
√
2 (3ρ3 − 2ρ) sin(θ) Vertical coma

z8 3 1 2
√
2 (3ρ3 − 2ρ) cos(θ) Horizontal coma

z9 3 -3 2
√
2 ρ3 sin(3θ) Vertical trefoil

z10 3 3 2
√
2 ρ3 cos(3θ) Oblique trefoil

Shifted Spot

Missing
SpotSensorMicrolens

Array
Distorted
Wavefront

Fig. 1: Schematic depiction of Shack-Hartmann sensor work-
ing principle. Incoming distorted wavefront maps to dot
displacements from their nominal center.

and is comprised of a mechatronic (3) and an optical subsys-
tem (4). The mechatronic system is a positioning device (e.g.
robotic system, Cartesian manipulator) driven by a control
input u ∈ Rnu capable of positioning optical components
described by the pose vector x ∈ Rnx . Therein, nu and
nx denote the degrees of freedom (DOF) of the positioning
device and the optical components, respectively. The device
is subject to positioning uncertainty w ∈ Rnx which can be
assumed to be additive and normally distributed with zero
mean and covariance matrix Q, i.e. w ∼ N (0,Q).
The optical subsystem consists of a (fixed) light source,
optical components, and a (fixed) wavefront sensor1. In
this paper, we assume that the optical properties of the
components are known with sufficient accuracy such that
the output of the optical system solely depends on the pose
of its components. The sensor returns a vector of Zernike
coefficients z ∈ Rnz (see Sec. II) and is subject to sensor
noise v ∈ Rnz . Again, the sensor noise can also assumed
to be additive, zero mean and normally distributed described
by a covariance matrix R, i.e. v ∼ N (0,R).
In this paper, we assume that the positioning system is
feedback-controlled and tuned such that steady-state errors
are eliminated over time. The transient response only plays
a minor role in the placement of objects due to small
time constants compared to the entire assembly process.
Therefore, the state equation can be described by a linear

1The restriction of a fixed light source and sensor is without loss of
generality but simplifies the demonstrator assembly significantly.

u

Mechatronic Subsystem Optical Subsystem

vw

x

Optomechatronic
State

Estimator

z

x∗

Positioning
System

Optical
System

Fig. 2: Block diagram for optomechatronic state estimator.

input-output relation. The discrete-time state-space equations
then result in

xk+1 = Akxk + Bkuk + w (5)
zk = h(xk) + v. (6)

In this paper, we assume that Ak =A= I and Bk =B= I,
meaning that undesired cross-coupling disturbances are ne-
glected and should be handled by the controller and the
state-space matrices are time-invariant. The goal of this paper
is to estimate the optical component poses i.e. the state x.
Fig. 2 shows that optical component poses cannot be directly
obtained and therefore this has to be achieved through means
of state estimation.

B. State Estimation

Although the measurement equation (6) has non-negligible
nonlinearities, which need to be considered, it is still useful
to have local information around the operating point. Sensi-
tivity analysis studies the local impact of input changes (here:
optical component poses) to output changes (here: Zernike
coefficients). In general, as there is no analytic description of
h, the sensitivity matrix S ∈ Rnz×nx (the Jacobian) needs
to be found via numerical differentiation. Since a discrete-
time representation is chosen here, the sensitivity matrix
Sk ≈ ∂h(xk)/∂xk is dependent on the discrete time step and
needs to be updated for each time step. Sensitivity analysis
also provides insight into the difficulty of state estimation.
Especially ill-conditioned sensitivity matrices will directly
lead to the deterioration of the estimation accuracy [33].
In general, it is not guaranteed that all states can be recon-
structed from measurements alone. To ensure the feasibility
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of state estimation, observability needs to be ensured [34].
By linearization of the measurement equation (4) via the
sensitivity matrix Sk, a discrete-time linear time-variant
system is obtained. For such systems, (total) observability
is achieved if the observability matrix

Ok0 =


Sk0

Sk0+1Ak0

Sk0+2Ak0+1Ak0
...

Sk0+n−1Ak0+n−2 · · ·Ak0+1Ak0

 (7)

has full rank (for any initial time k0) [35].
It should be noted that wavefront sensors are able to provide
a large number of Zernike coefficients as compared to the
DOF of the state to be estimated. Therefore, nz�nx holds
in practical applications. Since the measurement equation (6)
is time-variant, this condition needs to be evaluated after each
filter iteration in Sec. IV.
The corresponding dual problem to observability is (state)
controllability. In this paper, this condition is trivially satis-
fied at all times since the optical system is placed far from the
boundaries of the workspace where certain DOF cannot be
controlled anymore by the macro-micro manipulator system.
In this paper, four well-known filtering techniques are em-
ployed, the EKF, the IEKF, the UKF, and the PF. The
specific implementation details for the simulation and ex-
periments can be found in Sec. IV-C.

IV. SIMULATION AND EXPERIMENTAL RESULTS

This section describes the experimental setup, the results
from the identification of the process and measurement
covariance matrices and presents the results of the simulation
and experiment. The optical system is deliberately chosen to
be simple in order to validate the state estimation approach.
However, the identification process can be repeated in a
straightforward manner for each (additional) optical compo-
nent to be assembled which allows the integration into more
complex assembly procedures [12].

A. Experimental Setup

The macro-micro manipulator utilized for the experiment
is comprised of an industrial robot, a piezo-driven micro-
positioning unit, and a gripper. The industrial robot is a
KUKA Agilus KR10R1100 sixx manipulator with six DOF.
It has a closed control architecture and the desired poses are
commanded via ROS [36]. Attached to the industrial robot
is a piezo-driven micro-positioning unit with three DOF that
is PID voltage-controlled [17]. The voltage is converted to
Cartesian displacement with the calibration data provided by
the manufacturer. The load-free maximum displacement is
200 µm in each axis. The micro-positioning unit can take
commands via ROS which are passed to LabView running on
a real-time system. Then, an amplifier converts the signals to
the piezoelectric actuators and from the strain-gauge sensors
accordingly. Furthermore, a gripper is attached to the micro-
positioning unit to pick, place and hold mounted optical
components.

The optical system consists here of a laser (green,
λ = 532 nm), a single optical component (a bi-convex lens
with 50 mm focal length), and a wavefront sensor (Thorlabs
WFS150-5C with a 150 µm microlens array pitch). This
wavefront sensor is capable of providing up to 66 Zernike
coefficients. In this paper, we use the first nine Zernike
coefficients (nz = 9, without piston) for the state estimation.
Since the lens is rotationally symmetric around its z-axis,
only five DOF can be observed. The conclusion can be
drawn from evaluating the rank of the observability matrix
(7). Therefore, we reduce the state vector to the number
of observable states, i.e. nx = 5. The wavefront sensor is
interfaced via LabView which processes the raw sensor data
and then passes the Zernike coefficients to MATLAB where
the state estimation is implemented. The experimental setup
is depicted in Fig. 3.

B. Identification of Process and Measurement Noise

In order to implement/improve converge of the filtering
approaches, the Cartesian covariance matrices need to be
known/estimated.

a) Macro-micro manipulator: For the industrial
robot, the (reduced) Cartesian covariance matrix is
QM = diag(σ2

M,x, σ
2
M,y, σ

2
M,z, σ

2
M,θx

, σ2
M,θy

). Therein,
cross-coupling effects are neglected and only the five DOF
to fully identify the lens pose are considered. Since neither
accuracy nor repeatability is disclosed for most industrial
robotic systems, a laser tracker has been used to find
the repetition accuracy. By obtaining measurements after
repeated positioning, the standard deviations are found to be
σM,x = 0.1500 mm, σM,y = 0.0778 mm, σM,z = 0.2189 mm,
σM,θx = 0.0210◦, and σM,θy = 0.0195◦.
The covariance matrix of the micro-positioning unit Qm

contains the standard deviations of the three Cartesian
DOF of the micro-positioning unit. Hence, the covariance
matrix has the structure Qm = diag(σ2

m,x, σ
2
m,y, σ

2
m,z, 0, 0).

Here, repetition accuracy is again found by repeated
positioning, measuring strain-gauge output and converting
it to Cartesian displacement via calibration data provided
by the manufacturer. We find the standard deviations
to be σm,x = 0.3657 µm, σm,y = 0.4572 µm, and
σm,z = 0.5255 µm.

b) Wavefront sensor: For the identification of the mea-
surement covariance matrix, continuous measurements from
the wavefront sensor are obtained. For this, the lens was
placed inside the optical path to get comparable results
for the simulation and experiment. Now, the mean value
and standard deviation for each Zernike coefficient can be
obtained by fitting the data to a Gaussian distribution. The
mean values are non-zero since the lens is inside the optical
path resulting in a convex-shaped wavefront. For the covari-
ance measurement matrix R = diag(σ2

z,1, σ
2
z,2, ..., σ

2
z,nz

),
only the standard deviations are of interest. Cross-talk be-
tween Zernike coefficients can be neglected in this paper as
only lower-order aberrations are considered which exhibit
minimal cross-correlation. Fig. 4 shows the distribution of
two Zernike coefficients (after mean value subtraction) and
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Micro-positioning Unit

Gripper

Laser ND-Filter Wavefront Sensor

Fig. 3: Setup with macro-micro manipulator and optical system utilized in the experiment. The macro-micro manipulator is
comprised of an industrial robot and a micro-positioning unit. Additionally, a gripper is attached to the micro-positioning
unit for object handling. The optical setup is shown without any optical components.

the corresponding fit. Tab. II lists all ten mean values and
standard deviations of the Zernike coefficients utilized in the
simulation and experiment.

TABLE II: Identified mean and standard deviations of
Zernike coefficients obtained from sensor data.

Zernike Coefficient µz / µm σz / µm
z1 (Piston) 1.0894 0.0289
z2 (Tip) 0.2205 0.0202
z3 (Tilt) 0.5336 0.0147
z4 (Defocus) -1.8092 0.0052
z5 (Oblique astigmatism) -0.0015 0.0077
z6 (Vertical astigmatism) 0.0122 0.0080
z7 (Vertical coma) -0.0021 0.0051
z8 (Horizontal coma) -0.0253 0.0037
z9 (Vertical trefoil) -0.0150 0.0045
z10 (Oblique trefoil) -0.0026 0.0046

C. Simulation

In order to find the approach that yields the most accurate
results, the proposed state estimator is tested against ground
truth in simulation first. For the filtering approaches, the
identification results of section IV-B will be used. Since the
industrial robot will insert the component in the optical train,
the initial covariance matrix corresponds to the positioning
uncertainty of the macro-positioning system Q0 = QM . In
this paper, we follow a decoupled approach for the genera-
tion of identification trajectories to mitigate cross-coupling
effects, i.e. the macro system (here: the industrial robot) and
the micro-positioning unit will not move simultaneously. The
macro system will move along the less sensitive direction,

(a) (b)

Fig. 4: Selected Zernike coefficients (after mean value
subtraction) from recorded sensor data (gray) with normal
distribution fit (blue): Tilt z3 (a) and oblique astigmatism z5
(b).

where larger ranges of motion and less precision is required.
The micro system (the piezo-driven micro-positioning unit)
will move the system along higher sensitive directions. This
requires shorter ranges of motion with higher repeatability.

For the bi-convex lens employed in the simulation and
experiment, the directions with low sensitivity are z, θx, and
θy and directions with high sensitivity are x and y [12].
Fig. 5a depicts the actual state of the lens during simulation.
The initial state is different from zero due to the positioning
uncertainty. Then, trajectories are executed which are sym-
metrical around zero and the range of motion in each axis
is proportional to the sensitivity in this direction. As long as
the sensor is sufficiently illuminated, trajectories with a large
displacement range should be chosen. Furthermore, it shows
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Fig. 5: True state (ground truth) of the optical component (a), absolute identification error (b), and logarithmic plot of the
standard deviation of the state covariance matrix for the EKF.

(a) (b) (c)

(d) (e)

Fig. 6: Box plots of error in x-, y-, z-, θx-, and θy-direction for different filtering (EKF, IEKF, UKF, PF) and nonlinear
optimization (NGB, NGF) approaches. The data was obtained after 300 trials. The median is indicated by —, the mean
value µ by +, the interquartile range by —, and the 9th/91st percentile by the whiskers —.

Fig. 7: Impact of the chosen number of particles on standard
deviations of x, y, and resulting computation time.

that first the macro system is moved and then the micro-
positioning unit. Fig. 5b depicts the absolute estimation error
|ek| = |k − k∗| for each state k ∈ {x, y, z, θx, θy} with
an EKF, where imminent estimation improvement can be
observed. Fig. 5c shows the standard deviation obtained from
the state covariance matrix. After iteration seven, the micro-
positioning unit moves which drives down the estimation
uncertainty in y- and θx-direction.
In order to compare different strategies for estimating the
optical component pose, Tab. III lists three approaches and
its effect on the estimation accuracy. Moving the optical
component with the macro system first and then the micro-
positioning unit is denoted by Mm. Conversely, moving the
micro-positioning unit first and then the macro system is
denoted by mM. Strategy m denotes that only the micro-
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Fig. 8: Results of the estimation experiment with the IEKF. In (a), the nominal trajectory is shown while (b) shows the error
between predicted and corrected states obtained from the optomechatronic state estimator. (c) shows the standard deviation
obtained from diagonal entries of of the corrected state covariance matrix.

TABLE III: Mean, median, and standard deviation (Sd) of
the identification error obtained in all 5 directions after 200
trials with an EKF for three strategies (Mm, mM, and m).
For better comparability, the smallest values of the standard
deviation are highlighted in color.

Dir. Mm mM m
x Mean −8.99 · 10−3 4.25 · 10−2 4.37 · 10−3

Median −1.90 · 10−3 9.02 · 10−3 1.34 · 10−2

Sd 5.66 · 10−2 2.70 · 10−1 1.02 · 10−1

y Mean 2.58 · 10−3 2.76 · 10−3 −6.25 · 10−3

Median 5.72 · 10−4 4.65 · 10−3 −5.43 · 10−3

Sd 5.97 · 10−2 7.37 · 10−2 1.11 · 10−1

z Mean 1.45 · 10−2 1.63 · 10−2 6.88 · 10−2

Median 2.21 · 10−2 7.26 · 10−7 7.45 · 10−2

Sd 1.46 · 10−1 2.98 · 10−1 1.55 · 10−1

θx Mean 4.07 · 10−2 4.02 · 10−2 −1.01 · 10−1

Median 5.16 · 10−3 7.01 · 10−2 −9.59 · 10−2

Sd 9.75 · 10−1 1.19 1.81
θy Mean 1.47 · 10−1 −1.11 · 10−1 −7.15 · 10−2

Median 5.16 · 10−2 −1.47 · 10−1 2.47 · 10−1

Sd 9.27 · 10−1 1.18 1.66

positioning unit in its three Cartesian DOF is moved. By
looking at the standard deviation after 200 trials, the Mm
strategy yields the smallest value. Roughly speaking, one
can gain an order of magnitude in estimation accuracy by
following a macro-micro manipulator approach. In particular,
the directions with high sensitivity (here x, y) benefit from
this approach.

D. Statistical Comparison

For a thorough evaluation of the proposed methods, sta-
tistical analysis is necessary due to the underlying stochastic
nature of the uncertainties. We conduct repeated trials to
compare the estimation accuracy of the filtering methods
from Sec. III-B with common nonlinear approaches based on
a quadratic cost function [12], [10]. The obtained minimum
of the cost function then yields the estimated pose. In this
paper, we use a quasi-Newton algorithm as an NGB approach
and a simplex search method as NGF approach. For the UKF,
the sigma points are chosen here based on the unscented
transformation which is parameterized by α, β, and κ. α
is a scaling parameter determining the spread of the sigma

points, κ a secondary scaling parameter usually set to zero,
and β is used to incorporate prior knowledge of the state
distribution. In this paper, we choose β = 0 which is
optimal for Gaussian distributions and the remaining scaling
parameters to be α = 10−3 and κ = 0 [37]. For the IEKF,
we implemented the variable step-length line search IEKF
[38] with 20 maximum iterations and a minimum step size
αiekf,max = 10−8. The PF implemented in this paper uses a
mean state estimation method and a multinomial resampling
method with 100 particles.
Fig. 6 depicts the box plots of the estimation error for 300
trials. For axial displacement of the lens, filtering approaches
outperform nonlinear approaches. For lateral displacements
and tilts, the data within in the interquartile range are in
same order of magnitude. However, the EKF, the UKF,
and the PF spread the data over a wider range (indicated
by the whiskers). For the IEKF, the 9th/91st percentile is
always close to the interquartile range indicating higher
estimation accuracy. Furthermore, the EKF (and the UKF
to some extent) appears to produce a systematic bias when
estimating tilt indicating a preferred estimation direction. For
the IEKF, on the other hand, mean and median values are
always close to each together. While the PF appears to be
inferior in the quality of lateral estimation, given enough
computational resources, the PF should match or surpass
the performance of the other approaches. Fig. 7 shows
the influence of the number of particles on the achievable
accuracy and computation time. However, due to this high
computational load, the PF becomes impractical for optical
pose estimation in assembly scenarios. Similar results have
already been observed for robotic pose estimation [39]. The
type of nonlinear optimization does not seem to affect the
estimation accuracy. In conclusion, the IEKF consistently
yielded the highest estimation accuracy for all states. How-
ever, this means that longer computation times as compared
to the EKF and UKF have to be taken into consideration.

E. Experimental Results

For the experiment, the strategy which had the best perfor-
mance in simulation will be chosen, which is an IEKF and
by moving the macro-manipulator first and then the micro-
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positioning unit (see Tab. III). Fig. 8a shows the nominal
trajectory that has been commanded to the macro-micro
manipulator via respective control inputs to the industrial
robot and micro-positioning unit. As the true state of the
optical component is unknown, experimental results do not
provide ground truth for the evaluation of the estimation
error. Instead, the absolute error between predicted and
corrected states and the standard deviations from the state
covariance matrix are shown in Fig. 8b and 8c, respectively.
In general, smaller values indicates a higher confidence in
the estimate.

V. CONCLUSION AND FUTURE WORK

In this paper, an optomechatronic state estimator has been
presented to infer optical component poses via a wave-
front sensor. A macro-micro manipulator has been employed
which on the one hand is able to grasp and move opti-
cal components near the optical system due to its large
workspace and on the other hand the micro-positioning unit
is able to fine-adjust optical components. The statistical
simulation results show that filtering approaches are superior
to nonlinear approaches and generally lead to a smaller
estimation error. Further, the strategy to move a lens first by
the macro system and then by the micro system resulted in a
smaller standard deviation of the estimation error compared
to other strategies. Experimental validation has been executed
and the convergence of the predicted and corrected states
could be observed.
For future work, simultaneous identification of the optical
component poses as well as its optical parameters or even
geometric properties should be addressed. Furthermore, as
an alternative to the filtering methods of the presented
optomechatronic state estimator, batch estimation methods
could also be analyzed. Also, trajectory synthesis for persis-
tent excitation is a topic that needs a dedicated analysis for
this application.
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